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ABSTRACT: The steady shear viscosity (gs), the steady
first normal stress coefficient (W1), the steady second nor-
mal stress coefficient (W2), and extensional viscosity (ge)
are four important parameters for polymer melts during
polymer processing. In this article, we propose a stress
and rate-dependent function to describe creation and
destruction of polymer junctions. Moreover, we also intro-
duce a movement expression to describe nonaffine move-
ment of network junctions. Based on network theory, a
nonaffine single-mode rheological model is presented for
the steady flow of polymeric melts, and the equations of

gs, W1, W2, and ge are derived from the model accordingly.
Furthermore the dependences of gs and ge on model pa-
rameters are discussed for the model. Without a complex
statistical simulation, the single-mode model with four pa-
rameters yields good quantitative predictions of the steady
shear and extensional flows for two low density polyethyl-
ene melts reported from previous literature in very wide
range of deformation rates. VC 2012 Wiley Periodicals, Inc.
J Appl Polym Sci 125: 3107–3114, 2012
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INTRODUCTION

Rheological properties of polymeric melts are impor-
tant during polymer processing, which can signifi-
cantly affect the processing technology and final
properties of products. Hence, many rheological
models have been derived to describe the rheologi-
cal properties of polymeric materials in several deca-
des.1–4 One of the important models is a single-
mode network model, the single-mode model only
needs a set of parameters to control and predict
shear and extensional properties simultaneously,5

the parameters in single-mode model are easy to be
determined, and it is convenient for implementation
in polymer processing and finite element simulation.
In general, the relationship between steady shear
viscosity and shear rate accords to a law equation at
high shear rate, and the exponent is between 0 and
1, however, the exponent derived from a basic net-
work single-mode model is �2.1 On the other hand,
based on the experimental facts polymer melts also
cannot be extended indefinitely, for some polymer
melts the steady extensional viscosity increases with

increasing extensional rate initially, reaches a maxi-
mum and then decreases with further increase of the
extensional rate. However at a finite extensional rate
steady extensional viscosity tends to infinity for
some single-mode models.1,5 Moreover, predicted
steady first and second normal stress coefficients
also deviate from the experimental results. There-
fore, many researchers proposed different ways to
improve the predictive ability of single-mode net-
work model.
A common and effective approach is that the net-

work segments of polymer melts are destroyed or
disentangled at variable rates. Based on the different
choices of macroscopic variation, the single-mode
network models can be labeled as stress-dependent
and rate-dependent. Phan Thien and Tanner6

assumed that the rates of creation and loss of net-
work segments were functions of stress, and pro-
posed a nonaffine PTT mode by introducing a slip-
ping coefficient, but the PTT model does not predict
the steady shear flow in the wide range of shear rate
successfully. Moreover the exponent derived from a
single-mode exponential PTT model is �1 or so.1,7

The exponent derived from a single-mode XPP
model which is statically unstable is �4/3.7 Tanner
and Nasseri7 proposed a single-mode PTT-XPP
model to avoid the very rapid shear thinning of XPP
model, but the predicted results are unsatisfactory.
Sun et al.5 expected that a slippage increased with
the length of the segments (Q), and assumed that
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the slippage depended on Q2 which involves the
stress. The model needs seven parameters to predict
steady shear viscosity, first normal stress coefficient
and extensional viscosity of the mixed dekalin/poly-
butene oil solvent. Chan Man Fong and De Kee8 pro-
posed that the rates of creation and loss of segments
were the functions of macroscopic deformation rates,
their predictions for steady flows which do not
include the steady second normal stress using five
parameters roughly accords with the experiment
results of polymeric solutions. Sun et al.9 incorpo-
rated an internal viscosity idea into the single-mode
network model, and proposed two rate-dependent
expressions of the shear viscosity and relaxation
time, the predicted results about the steady shear vis-
cosity and first normal stress coefficient close to the
experimental results using eight parameters.

In addition, there are few other single-mode mod-
els using a set of parameters to predict well the
steady shear and extensional flows in very wide
range of deformation rates. Previously, Giesekus
proposed a nonlinear four parameter model, but the
exponent derived from this single-mode model is �1
or so.7,10 Souvaliotis and Beris11 proposed an
extended White–Metzner model based on an internal
structural parameter, but the model needs different
parameter values to predict the steady shear viscos-
ity and first normal stress coefficients. Barnes and
Roberts12 modified White–Metzner equation by
introducing the empirical expressions of the shear
viscosity and relaxation time, and the modified
equation uses six parameters to predict the shear
and extensional viscosities, but predicted first and
second normal stress coefficients are poor.13,14

The steady shear and extensional viscosities, as ba-
sic characteristic parameters in polymer processing,
can affect processing technology. Moreover the
steady first and second normal stress coefficients are
also related to the secondary flow, extrudate swell
and Weissenberg effect, and so on.1,15–17 Thus, study-
ing steady viscosities and normal stress coefficients
is very important. Meanwhile, further expanding sin-
gle-mode application scope based on network theory
is also necessary and significant. In this article, we
analyze the mechanisms of creation and destruction
for polymer network junctions and nonaffine move-
ment of network segments, attempt to use a simpler
method to present a single-mode model for polymer
melts based on the network theory. Furthermore, the
effects of model parameters on steady shear and
extensional viscosities are discussed. The model pre-
dicts simultaneously steady shear viscosity, steady
extensional viscosity, and steady first and second
normal stress coefficients using four parameters, and
predicted results are compared with experimental
data from previous literature. In final, the comments
on the model are made.

THEORY AND MODEL

Basic equations

According to the network theory, the polymeric ma-
terial is represented by a network of temporary junc-
tions. Q is the end-to-end vector from junction point
to junction point. W (Q,t), the distribution function,
is defined such that W (Q,t)dQ is the number of seg-
ments per unit volume at time t that have end-to-
end vectors between Q and Q þ dQ. The probability
distribution function for network theory obeys a
convection equation.1

@W
@t

¼ � @

@Q
� ½Q

�
W�

� �
þ c� l (1)

where the dot denotes a derivative with respect to
time, the c and l are the rates of creation and loss of
network segments, respectively. The rate of junction
loss should be equal to the rate of junction creation
in the equilibrium state.18 Hence, the c and l can be
written as:

c ¼ fW0; l ¼ fW (2)

where f is a rate function of network segments, and
W0 is the distribution function at the equilibrium.
Bird et al.1 have elaborated the relationship

between total stress tensor (p) and the average con-
figuration of polymeric network stands. We also
assume that the network stands contribute to p, and
the Hookean stands for network stands are chosen.
Thus, the expression of p can be written as:

p ¼ �H QQh i (3)

where H is a spring constant.
It can be followed from eq. (3) that

ðtrpÞ ¼ �H Q2
� �

(4)

According to the network model, p may be broken
up into an isotropic portion which is present even at
equilibrium, and a nonisotropic portion which is
stress tensor (s). So p can be written as the sum of
two parts:1

p ¼ �nKTdþ s (5)

where n is the number density of network segments,
K is the Boltzmann constant, T is the absolute tem-
perature, d is an unit tensor. At the equilibrium, the
stress tensor is zero. Substituting eq. (3) into eq. (5),
the following expression can be deduced.

H QQh i0¼ nKTd (6)
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Analysis

In general, the rates of creation and loss for network
segments play an important role in the viscoelastic
behavior.1,5,8 As stated above, many different expres-
sions of the creation and loss for network segments
have been proposed to capture the viscoelastic
behavior of polymer melts. Some researchers5–7

assumed that the rates of creation and loss for net-
work segments were the functions of the stress. Fur-
thermore, many researchers8,9,12,19 considered that
these rates were the functions of macroscopic defor-
mation rates. Therefore, based on previous reports
we assume that the creation and destruction of net-
work junctions depend on the stress (s) and the rate
parameter ðc� 0Þ. Meanwhile, we also note that the
shear viscosity (gs) is determined by the stress and
rate. Thus, we propose that rates of creation and
loss are appropriately written as:

f ¼ ½gð1þ c
� a

0Þ�
�
gs (7)

where a is a shear thinning parameter, g is a param-
eter of relaxation modulus. The rate parameter is
non dimensional to eliminate an unconformity of
units, and the value of c

�
0 is equal to the value of

shear rate ðc� Þ in steady shear flow, the value of c
�
0 is

equal to the value of extensional rate ðe� Þ in steady
extensional flow.

In fact, a test strand of polymer network is sub-
jected to some complex forces in the polymeric flow.
The externally applied force stretches the test strand,
meanwhile, the intrastand force resists stretching of
the stand. Other important forces, such as those
resulting from chain–chain interactions, may be non-
local and can be transmitted over large distances
compared with the test strand.20 When the test
strand is extended, the nearby, interconnected
strands are also extended. The backbone forces of
these nearby and interconnected extended strands
intensify the motion which may shorten the test
strand.20 With the increases of Q and deformation
rates, the restoring force, which shortens the test
strand, will increase. Therefore, we regard polymer
backbone as the investigating object, and assume
that the end-to-end distance of the segment is much
less than its maximum length (Q0), and use a par-
tially shortening form to describe the nonaffine
motion of network segments as follows:

Q
�
¼ k �Q�Q2

Q2
0

� c� �Q (8)

where k is the velocity gradient tensor, and
c
� ¼ kþ kT is the rate of deformation tensor, and kT

is the transpose of velocity gradient tensor. The
parameter Q0, a statistical average value, is a ratio of

the maximum length sum of backbone segments
including linking branched segments to monomer
numbers of backbone. Because the ratio of exten-
sional viscosity to shear viscosity is three when de-
formation rates close to zero,1 it may be assumed
reasonably that the value of Q0 in steady extensional
flow is three times larger than the value in steady
shear flow.
Substituting eqs. (2)–(4), (6), and (8) into eq. (1),

multiplying the expression by QQ, and integrating
over the configuration space, we produce a convec-
tion equation.

d

dt
QQh i ¼ k : Q

@

@Q
�QQ

� �
� c

�
:

Q2

Q2
0

Q
@

@Q
�QQ

� �

þ f ð QQh i0� QQh iÞ ð9Þ

where h���i indicates the average taken over the con-
figuration space of the network stands. Substituting
eq. (7) into eq. (9) and applying Peterlin analysis, we
finally arrive at a constitutive equation for polymer
melts as follows:

gsð1þ c
� a
0Þ þ gssð1Þ

� ½g2
s ðtrsÞ � 3g~ggsð1þ c

� a
0Þ�ðc

� �sþ s � c� Þ
bg~gð1þ c

� a

0Þ

¼ �½g~gð1þ c
� a
0Þ þ

2gsðtrsÞ � 6g~gð1þ c
� a
0Þ

b
� c� ð10Þ

where ~g ¼ nKTk, b is an extensibility parameter for
the segments given by b ¼ HQ2

0/KT, s(1) is the upper
convected derivative of s and is given by:

sð1Þ ¼ ðDs=DtÞ � k � s� s � kT (11)

where D/Dt is the material derivative.

EXPERIMENTAL DATA

To examine predictive ability of this model objec-
tively, the experimental data are adopted as follows:
Pivokonsky et al.21 conducted the rheology of two
highly branched low density polyethylene (LDPE)
materials (LDPE Bralen, Slovnaft, Slovakia and LDPE
Escorene, Exxon, USA). For two kinds of LDPE, the
steady shear viscosity and first normal stress coeffi-
cient at low shear rate were measured with the
advanced rheometric expansion system (ARES 2000,
Rheometrics), the steady shear viscosity and first nor-
mal stress coefficient at high shear rate were obtained
with the capillary rheometer RH7 (Rosand Precision).
The uniaxial extensional viscosity was measured
using the ARES 2000 rheometer equipped with the
SER universal testing platform (SER-HV-A01 model).
The experiment was performed at 200�C. The
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molecular characteristics of two materials at 200�C are
presented in Table I.21,22 For detailed descriptions of
the experiment, see Pivokonsky et al.21

RESULTS AND DISCUSSION

Equations of steady shear flow

The velocity components for steady shear flow are:

v1 ¼ c
�
x2; v2 ¼ 0; v3 ¼ 0 (12)

where v is velocity. The stress relevant equations
can be written as:

gs11ð1þ c
�
aÞ � 2gss12 c

�

� 2s12 c
� ½g2

s ðtrsÞ � 3g~ggsð1þ c
�
aÞ�

bg~gð1þ c
�
aÞ ¼ 0 ð13Þ

gs22ð1þ c
�
aÞ � 2s12 c

� ½g2
s ðtrsÞ � 3g~ggsð1þ c

�
aÞ�

bg~gð1þ c
�
aÞ ¼ 0 (14)

gs12ð1þ c
�
aÞ � gss22 c

�

� c
� ðs11 þ s22Þ½g2

s ðtrsÞ � 3g~ggsð1þ c
�
aÞ�

bg~gð1þ c
�
aÞ

¼ � c
� ½g~gð1þ c

�
aÞ þ 2gsðtrsÞ � 6g~gð1þ c

�
aÞ

b
� ð15Þ

s13 ¼ s23 ¼ s33 ¼ 0 (16)

The shear viscosity is given by:

gs ¼ �s12
�
c
�

(17)

Combining eqs. (13)–(17) generates an equation in gs

which can be written by:

16c
�
6g9

s þ 16g2c
�
4ð1þ c

�
aÞ2g7

s þ 8bg2~gc
�
4ð1þ c

�
aÞ2g6

s

þ 8bg4~gc
�
2ð1þ c

�
aÞ4g4

s þ 4g4~g2c
�
2ð2b� 3Þð1þ c

�
aÞ4g3

s

þ b2g6~g2ð1þ c
�
aÞ6gs þ bg6~g3ð6� bÞð1þ c

�
aÞ6 ¼ 0 ð18Þ

The first and second normal stress coefficients are
respectively given by:

W1 ¼ ðs22 � s11Þ
.
c
�
2 ¼ 2g2

s

.
½gð1þ c

�
aÞ� (19)

W2 ¼ ðs33 � s22Þ
.
c
�
2

¼ �½4g5
sc

�
2 þ 6g2~gg2

s ð1þ c
�
aÞ2�

.
½bg3~gð1þ c

�
aÞ3

þ4gg3
sc

�
2ð1þ c

�
aÞ� ð20Þ

Equations of steady uniaxial extensional flow

The velocity field of steady uniaxial extensional flow
can be written as:

v1 ¼ �e
�
x1

.
2; v2 ¼ �e

�
x2

.
2; v3 ¼ e

�
x3 (21)

Substituting eq. (21) into eq. (10) yields some equa-
tions as follows:

gs11ð1þ e
�
aÞ þ gss11 e

� þ 2s11 e
� ½g2

s ðtrsÞ � 3g~ggsð1þ e
�
aÞ�

bg~gð1þ e
�
aÞ

¼ e
�
�
g~gð1þ e

�
aÞ þ 2gsðtrsÞ � 6g~gð1þ e

�
aÞ

b

	
ð22Þ

gs22ð1þ e
�
aÞ þ gss22 e

� þ 2s22 e
� ½g2

s ðtrsÞ � 3g~ggsð1þ e
�
aÞ�

bg~gð1þ e
�
aÞ

¼ e
�
�
g~gð1þ e

�
aÞ þ 2gsðtrsÞ � 6g~gð1þ e

�
aÞ

b

	
ð23Þ

gs33ð1þ e
�
aÞ � 2gss33 e

� � 4s33 e
� ½g2

s ðtrsÞ � 3g~ggsð1þ e
�
aÞ�

bg~gð1þ e
�
aÞ

¼ �2 e
�
�
g~gð1þ e

�
aÞ þ 2gsðtrsÞ � 6g~gð1þ e

�
aÞ

b

	
ð24Þ

The uniaxial extensional viscosity is defined by:

ge ¼ ðs11 � s33Þ
.
e
�

(25)

Combining eqs. (22)–(25) generates a cubic equation
of ge which can be written as:

16g4
s e

�
4g3

e þ ½8bg2~gg2
se

�
2ð1þ e

�
aÞ2

þ 4ð6� bÞg~gg3
se

�
3ð1þ e

�
aÞ�g2

e

þ ½6bg3~g2gs e
� ð1þ e

�
aÞ3 � b2g3~g2gs e

� ð1þ e
�
aÞ3

þ 2bg2~g2g2
s e

�
2ð6� bÞð1þ e

�
aÞ2 þ b2g4~g2ð1þ e

�
aÞ4�ge

þ 3bg4~g3ð6� bÞð1þ e
�
aÞ4 ¼ 0 ð26Þ

Dependences of steady shear and extensional
viscosities on model parameters

When deformation rates close to zero, the zero-shear
viscosity (g0) is b� 6ð Þ~g

.
b derived from eq. (18),

TABLE I
The Basic Characteristics of Two LDPE melts at 200�C

Material Mw (g mol�1) Mw/Mn g0 (Pa s)

LDPE Bralen 262,000 8.19 62,319
LDPE Escorene 366,300 12.1 77,103

Where Mw is weight average molar mass, Mw/Mn is
polydispersity coefficient.
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and the steady extensional viscosity is 3g0 derived
from eq. (26), which also agrees with the experimen-
tal facts.1,23,24 The parameters a, b, and g play an im-
portant role in this model. Based on eqs. (18) and
(26) simple simulations about a, b, and g are carried
out to study the dependences of gs and ge on one
parameter by fixing other parameters. The basic pa-
rameters used are as follows: g0 is 80000 Pa s�1, a is
0.1, b is 20, g is 3000 Pa. Figures 1 and 2 shows the
dependences of gs and ge on a, respectively. It can
be seen from Figures 1 and 2 that when c

�
is less

than 1 s�1, gs reduces approximately with an
increasing a, with the further increase of c

�
, gs

increases with the increasing a, and ge increases
approximately with the increasing a at fixed e

�
. So

the parameter a plays an adjust effect, and can avoid
the rapid reductions of gs and ge at high deforma-
tion rates.

Figures 3 and 4 show the dependences of gs and
ge on b, respectively. It can be seen from Figure 3
that gs increases with an increase of b. Because the
b is proportional to the Q0, at the same shear rate
an increasing Q0 weakens the chain shortening,
leading to the stress increase, the shear viscosity
increases accordingly. According to eq. (18), as b
tends to infinity, this shorten effect may be
neglected, gs is a constant, which also accords with
the basic network model.1 It can also be seen from
the Figure 4 that with the increase of b the strain
hardening extent enhances at the same extensional
rate. This can be explained that with the increasing
extensional rate the extensional viscosity also
increases for polymer melts occurring with strain
hardening phenomenon, and extensional strength
improves, which contributes to further melt exten-
sion, the value of b also increases. On the other
hand, owing to a contribution of branched chains,
the branched polymer has large value of b com-
pared with the linear polymer. The higher the
branched degree, the larger is the value of b, so the
strain hardening extent enhances. This predicted
behavior also closes to the experimental facts,23,24

and the dependences of gs and ge on b based on
our model accords to some simulations based on
POM, XPP, PTT-XPP model.7,25,26 Figures 5 and 6
show the dependences of gs and ge on g, respec-
tively. It can be seen from Figures 5 and 6 that gs

increases with an increase of g, and the deformation
rates occurring with shear thinning or strain hard-
ening phenomena increases. Because the g reflects
an ability of resist deformation, the resistance to
deformations enhances with the increase of g.
Therefore, the shear viscosity increases, moreover
the shear thinning and strain hardening phenomena
appear at relatively high deformation rates.

Figure 1 Dependence of gs on a.

Figure 2 Dependence of ge on a.

Figure 3 Dependence of gs on b.
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Experimental verification

In the model, we have defined four parameters, g0,
a, b, and g to describe the steady shear and exten-
sional flows. The parameter g0 is determined by re-
ferring the literature.21,22 The structural parameters
are difficult to be obtained from experiments directly
for many models,2,5–13,19,21,22,25,26 so the values of a,
b, and g, are got by fitting experimental data of gs.
Considering the experimental data of Pivokonsky
et al.21 LDPE Bralen is produced in an autoclave
way resulting in more globular structures. Moreover,
it has higher strain hardening capability than LDPE
Escorene,22 LDPE Bralen can also store more elastic
strain energy than LDPE Escorene due to a relatively
smaller size of the polymer coil or enhanced chain
stretching.27 It can be seen from Table I that two
kinds of LDPE have different molecular weights and
polydispersity coefficients. Compared with LDPE

Bralen, LDPE Escorene has high molecular weight
and zero-shear viscosity, so it can be deduced that
LDPE Escorene should undergo longer relaxation
process than LDPE Bralen under the same process-
ing conditions. Moreover, b also represents the maxi-
mum extensibility energy which can be stored in the
polymeric materials for nonlinear deformations of
the segments. The g reflects an ability of resist defor-
mation. Based on the above analysis, the model pre-
dictions using b ¼ 34, g ¼ 4300 Pa for LDPE Bralen
and b ¼ 19, g ¼ 3200 Pa for LDPE Escorene can give
a good agreement with experimental data of gs.
Meanwhile, we use a ¼ 0.05 for LDPE Bralen and a
¼ 0.08 for LDPE Escorene to describe the shear thin-
ning phenomenon well.
Predicted gs, W1, and W2 calculated from eqs.

(18)–(20) are compared with experimental data. The
comparisons between measured data and the predic-
tions of the model for the LDPE Bralen are repre-
sented in the Figures 7 and 8, it can be found that
the model has a good capability to predict gs for the
LDPE Escorene with optimal parameters, and pre-
dicted W1 and W2 of the model close to the experi-
mental data. Similarly, the predictions of gs, W1, and
W2 also close to the experiment facts for the LDPE
Escorene as shown in Figures 9 and 10. Following
the assumption of eq. (7), we get gs from eq. (18),
and then obtain ge from eq. (26) based on the pa-
rameter values which are also used in the steady
shear flow. Figures 8 and 10 also depict the compari-
sons between measured uniaxial extensional viscos-
ity data and the model predictions for the LDPE
Bralen and the LDPE Escorene, respectively. As
shown in the predictions and experiments, in a bi-
logarithm coordinate system ge is initially an
increasing function of e

�
, it reaches a maximum and

then reduces with further increase in e
�
. When e

�
is

closed to 0.1 s�1 for the LDPE Escorene, ge reaches aFigure 5 Dependence of gs on g.

Figure 6 Dependence of ge on g.Figure 4 Dependence of ge on b.
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maximum, and when e
�
increases to 0.3 s�1 or so for

the LDPE Bralen, ge also reaches a maximum. This
illustrates this model can predict when a strain hard-
ening phenomenon happens, and predicted ge is
also closed to the experimental data.

DISCUSSION

It cannot be denied that the physical significance is
relatively simple for this single-mode model. How-
ever, the analytical forms of gs, W1, and W2, and ge

are easily obtained based on this single-mode model
without a complex statistical simulation, the steady
shear and extensional properties are simultaneously

predicted using four parameters determined by
steady shear viscosity. Even if a is zero and the val-
ues of b, g, and g0 are arbitrary in the model, the

power law derived from eq. (18) is gs � c
� �2=3

at
high shear rate, which also closes to experimental
facts of polymer melts.17,21,28–30 Because the data of
steady shear viscosity is easy to be obtained from
the experiments, the parameters of this model are
easy to be determined. Furthermore the secondary
flow and extrudate swell are related to normal stress
coefficients.1,15–17 Considering the good predictions,
the model is also convenient to use together with fi-
nite element software for simulating these phenom-
ena of polymer melts.

Figure 7 Comparison between measured shear viscosity
and first normal stress coefficient data from LDPE Bralen
at 200�C and the predictions.

Figure 8 Comparison between measured second normal
stress coefficient and uniaxial extensional viscosity data
from LDPE Bralen at 200�C and the predictions.

Figure 9 Comparison between measured shear viscosity
and first normal stress coefficient data from LDPE Escor-
ene at 200�C and the predictions.

Figure 10 Comparison between measured second normal
stress coefficient and uniaxial extensional viscosity data
from LDPE Escorene at 200�C and the predictions.
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CONCLUSIONS

In this article, we propose a stress- and rate-depend-
ent function to describe creation and destruction of
polymer junctions. Moreover, we also introduce a
movement expression to describe nonaffine move-
ment of network junctions. Based on the network
theory a single-mode model of polymer melts is
derived in the shear and extensional flows, and the
equations of gs, W1, and W2, and ge are derived from
the model accordingly. Furthermore, the dependen-
ces of gs and ge on model parameters are also dis-
cussed for the model. Without the complex statistical
simulation, the model with four parameters has
good predictive and fitting capabilities of steady
shear and extensional flows for two low density
polyethylene melts at 200�C reported from previous
literature in very wide range of deformation rates.
Compared with other single-mode rheological mod-
els, predicted shear thinning behavior for this model
also closes to experimental facts without regard to
the parameter values.
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